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Need for SEAMA
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• Several Airborne Flight Conflict Resolution Algorithms
Continue  to be  Developed:

• Need to Assess Performance and Robustness of Airborne
  and Air-Ground Integrated System.

• Need a Rich and Realistic Environment for Modeling and
Modifying Distributed Conflict Resolution Algorithms.

- Optimization, Potential Fields, Rule-Based,
  Fuzzy Logic, Genetic Search, Neural Networks

• These Methods will have to be Integrated with Ground-
   Based Air Traffic Conflict Resolution System.

- Distributed Control System.
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Software Environment for Air-Traffic
Management Analysis (SEAMA)
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SEAMA Software Development Issues

• Allow Rapid Coding and Debugging Features.
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The Software Environment Must:

• Match the Complement of Software Tools Currently
Being Used by Researchers.

• Provide Simple Methods for Data and Algorithm
Exchange.

• Provide Capabilities for Algorithm Security in
Order to Permit Comparative Evaluations.

• MATLAB ®/Simulink® Software Environment Satisfies
these Requirements.
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Outputs: y

Analysis Using Concepts from Control Theory
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ATM as a Closed-Loop System (Robust Control):

Air Traffic
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Disturbances: w
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Control Theoretic Characterization of the
Air Traffic Management System
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Definitions:
States (x): Position and Velocity Vectors of all the Aircraft in the 

       Environment (Knowledge of these Completely Characterizes the
       Air Traffic Environment)

Performance Measures (z): Variables that Characterize ATM
                                   System Efficiency and Safety.

Controls (u): Air Traffic Control Advisories to the Aircraft  in the
              Environment

Disturbances (w): Wind, Ambient Temperature, Data Drop-out/Noise,
         Communication Channel Limitations, Subsystem 
         Failures (Computer, Radar, Communication Links),
         Increase in Traffic Volume,……..

Outputs (y): Data Available to Carry Out Air Traffic Management.
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a) Dissipative (Nonlinear Robust Control Theory, Helton and
                        James 1999)

Desirable Properties of Robust Closed-Loop
Systems
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b) Stable in the Lyapunov Sense

A System is γ-Dissipative if there exist a γ > 0 and a function
β(x0) ≥  0 with β(0)=0, such that

• A Robust Closed-Loop System Must be:
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i.e., the Nonlinear input-Output Map:
has finite L2 Gain with a Bias Term Due to the Initial State.

zwa

In Linear Dynamic Systems, Dissipativity is the H∞-Norm of the
System Transfer Function z(s)/w(s).
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Stability and Robustness
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Working Definitions:
Describes the Desirable Temporal Behavior of the 
Environment.

- Robustness: Tendency of the System to Maintain 
  Stability Under Disturbances and Variations in 
  System Parameters.

- Stability: Tendency of the System to Move Towards 
   Desirable Operating Conditions After Being Perturbed.

- Meaningful only in Terms of the Performance
  Variables (Output Stability) in Finite Time.
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Lyapunov Relative Stability Measure

10

Boundary
of

Safe Operations

Typical
Operational
Trajectory

Relative
Traffic
Density

Average
time-to-go
to Conflict

Stability
Margin



Optimal Synthesis Inc.

Stability and Distance Measures

Several distance measures implemented:
• Mean-squared radial separation
• Maximum radial separation
• Minimum radial separation
• Set distance (Hausdorff metric):

h(A,B) = max(d(A,B), d(B,A)), where
d(A,B) = max{d(x,B): x in A},  d(x,B) = min{d(x,y): y in B}

• Volumetric free space (margin only):
1 - volume (area) enclosed by curve or surface / volume
(area) enclosed by margin boundaries

Margin Set
Distance
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Air Traffic Performance Parameters

• aircraft count, change in aircraft count

*Implemented using code from Dr. Gano Chatterji, based on measures in Chatterji & Sridhar, “Measures of
Airspace Complexity”

• Cvg1, Cvg2, and Cvg3 (speed standard deviation, contrast ratio, and mean)*

• Cmih and Cmiv (inverse average minimum horizontal and vertical separation)*

• Cmih1 and Cmiv1 (inverse minimum horizontal and vertical separation)*

• Ctga1 (# pairs with time to go <5 min)*

• Ctga2 and Ctga3 (average and minimum time-to-go)*

• Average curvature

• Maximum curvature

• fractal dimension (“meta” performance measure)

• Cmhd and Cmvd  (inverse mean weighted horizontal and vertical separation)*
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SEAMA:  Software Demo
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Case Study: DAG-Conflict Detection
and Resolution

Two techniques from FACET implemented as Simulink blocks:
CDR1:  Geometric Optimization (C implementation)

CDR2:  Potential Field (MATLAB function implementation)
• Airborne CDR2: same as FACET implementation

– surveillance zone of 100nm
– separation red zone of 5.1nm

• Ground-based CDR2: significantly more conservative
– surveillance zone of 150nm
– separation red zone of 10.1nm
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ATM Command Integration:

Maximum Change

Weighted Sum
MAX(Ground Command, Airborne Command)

SUM(60% ground, 40% airborne)
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Case Study: DAG-Conflict Detection
and Resolution

CDR2 Technique (Potential Field): With Weighted Sum
Ground/Air Command Blending

Dissipativity Measures: (w = count w.r.t. moving average):

Note that in this example the ground conflict resolution scheme uses a
larger safety zone (10.1 nm) around the aircraft than does the airborne
scheme.
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Blending
Scheme

Dissipativity 1
(min sep)

Dissipativity 2
(min t-to-go)

Dissipativity 3
(speed CR)

Dissipativity 4
(max curv)

Air Only 3.0224 0.0920 6.2357 2.8240
Ground Only 2.0378 0.0920 6.2357 2.8240

Sum 2.5711 0.0920 6.2357 2.8240
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Case Study: DAG-Conflict Detection
and Resolution

Stability Margins:
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Blending
Scheme

Performance
Measures

Margin 1
(max radial)

Margin 2
(volumetric free space)

Air Only 0.1452 0.7072
Ground Only 0.1921 0.9252

Sum

min sep &
min t-to-go

0.1527 0.8847
Air Only 3.9573 0.9250

Ground Only 3.7064 0.9108
Sum

speed CR &
max curv

3.8301 0.9269

Ground Only 4.8481 0.9976

Sum

min sep & min t-to-
go & speed CR 4.8462 0.9973

CDR2 Technique (Potential Field): With Weighted Sum
Ground/Air Command Blending
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Case Study: DAG-Conflict Detection
and Resolution

Stability Bounding Surfaces, CDR2 with Weighted Blending
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Presentation Summary

• Software Environment for Air-Traffic Management 
  Analysis (SEAMA):

- Distributed Air-Ground Air Traffic Conflict Resolution.
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• Next Step:

• Case Study: Integrated Air-Ground Conflict Resolution

• Notions of Stability Margins, Dissipativity and other
Robustness Measures.

Numerical Implementation of Concepts from 
Decentralized Control Theory

- Structural Controllability and Observability

- Connective Stabilizability and Stability 
  (Graph Theoretic Methods)

- Connective Robustness Measures

- Distributed-Interconnected Observer Theory


